图像欺骗示意图。
“阿尔法”演示场景。
“阿尔法狗斗”试验与 DARPA 提出的“马赛克战”的联系。
AI 提升能力路线图。
在前些年,美国一家人工智能公司进行了一个深度学习的试验,训练一个高级人工智能(AI)学习弹珠消除游戏,AI只玩了约600次就达到了人类专业玩家的水平。但是当稍稍变化了游戏后,人类能快速适应,但AI却不能。法国泰雷兹公司的专家在2018年年底表示尽管部分初级AI(辅助系统)已经应用于现代化商用飞机中,但是采用深度学习建立识别模型的高级AI在未来10年里不会应用到驾驶舱里。法国联合本国8家集团在2019年7月宣布计划启动人工智能研究,分别是泰雷兹、液化气集团、达索、法国电力、雷诺、赛峰、道达尔和法雷奥。泰雷兹在2019年6月宣布已收购Psibernetix公司以加速AI领域的研究,希望在2021年左右在AI项目上取得重大进展。Psibernetix最初以“阿尔法”(ALPHA)空战AI系统而闻名,该系统在模拟空战中击败世界顶级飞行员。但是高级AI应用在民机领域的拥有已经如此艰难,在“尔虞我诈”的空战中应用更是要突破抗干扰、抗欺骗的难关。
网传苏-35与F-22在叙利亚近距遭遇?
早在2017年迪拜航展上俄罗斯技术发展集团就高调宣传了使用AI技术的苏-35战斗机,AI协调雷达、红外搜索和跟踪(IRST)、任务计算机等设备能够分析已发现的所有目标,对威胁程度进行分析,自动生成实时攻击列表并分配武器,然后同时攻击其中6个目标。在算法上可能也有所突破, 一方面是在有源、无源传感器的协同使用更加熟练;另一方面可能是在信号处理中能过滤误报。AI将更多地参与武器系统的管理,控制传感器完成搜索跟踪,飞行员只需要控制飞行姿态,或者专注于其他任务。俄罗斯这么高调宣传苏-35的AI技术,但效果如何还不清楚。
2018年下半年俄罗斯飞行员在社交网络上发布了在叙利亚驾驶苏-35S发现并锁定了F-22的照片,该照片可能来自于红外搜索与跟踪系统(IRST) 系统的截图。但美国媒体认为俄罗斯一直在叙利亚进行集中的虚假宣传活动,以制造混乱并削弱美国和盟国在那里的影响力。在美俄非战时状态下,F-22可能只是执行了巡逻或者监视任务,或者安装了龙勃透镜以保护自身的散射特性,这就给了苏-35S机会用雷达宽扇区初步探测F-22。从理论上讲,IRST使用液氢或液氮来将传感器冷却到极低的温度,寻找外界的温度差异,有助于它近距离发现隐身飞机。但IRST的视场比较窄,即使在晴朗的环境下,仅仅依靠IRST去搜索一架战斗机就像是通过吸管看星星。用宽扇区扫描发现目标的雷达提示它,是先进战斗机多传感器协同运用的一种典型功能。
由于苏-57的进度拖后,俄罗斯将部分苏-57的技术下放到苏-35S上先期测试,以检验效果。在加入AI之后,俄罗斯可能在多传感器协同的雷达猝发探测等传感器使用和信号处理算法方面得到了提升。但是苏-35S所宣传的AI,并不像是功能强大、权限很高的AI,更像是一种辅助决策或者机载武器规划系统,这种功能在世界范围内的三代半以上飞机里似乎已经有了应用。
美军计划将人工智能技术用于空战
1.超视距空战AI战胜人类高手
“阿尔法”(ALPHA)是美国辛辛 那提大学航空工程系开发的人工智能多机中距空战系统,已经在公开的报道中击败了美军经验丰富的退役飞行员。该系统作为红方,控制4架F/A-18飞机从大约95千米对抗退役飞行员控制的2架蓝方F/A-18飞机,蓝方同时有预警机支援,在态势上有优势。并且退役飞行员的武器数量和射程均优于红方。蓝方飞机目标是突破红方在海岸线的防守,经过多回合对抗结果都是退役飞行员被击落且红方没有损失。
“阿尔法”具备了一定的容错能力和强大的认知能力,能做出清晰的判断和准确的操作,比人类快250倍。人工智能没有情绪,很理性,反应快, 能预测人类飞行员的行为,迅速在进攻和防御之间切换。
“阿尔法”的算法框架为“遗传模糊树”,本质上是基于演进式的推理系统,能够利用人类空战的专家知识库, 帮助其在多机协同空战中形成实时快速决策能力。
2. ACE项目目标突破近距空战AI
本文网址:http://www.afeijie.com/gulouqu/2237.html ,喜欢请注明来源河南开封新闻网。
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。